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Beyond Classification and Regression

1 Applications such as image synthesis, image-to-image transformations
model high-dim signals

2 These applications require to learn the meaningful degrees of freedom
that constitute the signal

3 Typically, these degrees of freedom are of lesser dimensions than the
signal
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Example: Synthesizing Human faces

1 For generating new faces, it makes sense to capture a small number
of degrees of freedom such as

skull size and shape
color of skin and eyes
features of nose and lips, etc.

2 Even a comprehensive list of such things will be less than the number
of pixels in the image (i.e. resolution)
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Example: Synthesizing Human faces

1 If we can model these relatively small number of dimensions, we can
synthesize a face with thousands of dimensions
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Autoencoder: architecture

1 Feed-forward Neural network that maps a space to itself

2 Trained to map its input to itself (but not an identity function)
3 Network consists of two parts: encoder (f) and decoder (g)
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Autoencoder: architecture
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Autoencoder: principle

1 Original (input) space is of higher dimensions but the data lies in a
manifold of smaller dimension

2 Dimension of the latent space is a hyper-parameter chosen from prior
knowledge, and/or through heuristics
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Autoencoder: principle

1 Original (input) space is of higher dimensions but the data lies in a
manifold of smaller dimension

2 Dimension of the latent space is a hyper-parameter chosen from prior
knowledge, and/or through heuristics

Figure credits: Francois Flueret
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Autoencoder: nonlinearity

1 For a binary i/p vector, what could be an appropriate nonlinearity for
g?

2 For a real i/p vector?
3 Nonlinearity for f?
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Autoencoder: Objective

1 Enforces the reconstructed o/p to be very similar to i/p

2 Loss function takes care of this via training
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Autoencoder: Objective

1 Let p be the data distribution in the input space, autoencoder is
characterized with the following loss

Ex∼p ‖x− g ◦ f(x)‖2 ≈ 0

2 Training: finding the parameters for the encoder (f(·;wf )) and
decoder (g(·;wg) optimizing the empirical loss

ŵf , ŵg = argmin
wf ,wg

1
N

∑
n

‖xn − g(f(xn;wf );wg)‖2
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Autoencoder: Objective

1 For binary i/p, we may interpret the reconstructions as probabilities
(with a sigmoid nonlinearity)

2 Hence, we may use BCE loss for training
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Autoencoder: Connection to PCA

1 f and g are linear functions (data is normalized xi = 1√
|X|

(xi − µ))
→ optimal solution is PCA

2 Better results can be made possible with sophisticated
transformations such as deep neural networks → Deep Autoencoders
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Deep Autoencoders

Top row: original data samples
Bottom row: corresponding reconstructed samples (single ReLU layer of
dimension 32)
Figure credits:Keras blog
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Autoencoder: Regularization

1 idea is to help generalization

2 Over-complete autoencoders (more hidden units than the i/p
dimension) → parameter explosion and prone to overfitting

3 Even the under-complete configurations benefit from regularization
4 Simplest is to add l2 regularization term to the objective
5 Tie the weights, i.e., wg = wTf
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Besides dimensionality reduction

1 Autoencoders can capture the dependencies across signal components

2 This can help to restore the missing components from an input
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Besides dimensionality reduction

1 In this scenario, we may ignore the encoder/decoder architecture

2 Goal in this case is not to learn a φ such that φ(X) ≈ X
3 It is to learn a φ such that φ(X̃) ≈ X, where X̃ is a perturbed

version of X
4 This is referred to as a Denoising Autoencoder
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Denoising Autoencoder

1 This can be illustrated with an additive Gaussian noise in case of a
2D signal and MSE

ŵ = argmin
w

1
N

N∑
n=1
‖xn − φ(xn + εn;w)‖2 ,

where xn are data samples and εn are Gaussian random noise
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Denoising Autoencoder

Figure credits: Ali Abdelal, https://stackabuse.com/
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Sparse Autoencoders

1 Tries to enforce the hidden neurons to be inactive mostly

2 Restricts the freedom of the parameters by forcing them to fire
sparsely

3 Uses a sparsity parameter (ρ) (typically close to 0, say 0.01)
4 Enforces the mean neuron activation (ρ̂l) to be close to ρ
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Sparse Autoencoders

1 Mean activation: ρ̂l = 1
m

∑m
i=1 f(xi)l

2 R(w) =
∑k
l=1 ρ log ρ

ρ̂l
+ (1− ρ) log 1−ρ

1−ρ̂l

3 k - dimension of hidden layer
m -size of training dataset
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Contractive Autoencoders

1 Prevents an autoencoder from learning an identity function

2 R(w) =
∣∣∂f
∂x

∣∣
F

3 Competition (in the latent/hidden layer) b/w ‘being sensitive’ and
‘not sensitive’ to the i/p variations

4 Ends up capturing only the important variations in the i/p (something
like PCA)
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Latent Representations

1 Consider two samples in the latent space and reconstruct the samples
along the line joining these

2 g(αx+ (1− α)x′)

Figure credits: Francois Fleuret
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Latent Representations
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Generative Modeling by Autoencoder

1 Introduce a density model over the latent space

2 Sample there and reconstruct using the decoder g
3 For instance, use a Gaussian density for modeling the latent space

from the training data (estimate mean and a diagonal covariance
matrix)
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Generative Modeling by Autoencoder

Figure credits: Francois Fleuret
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Generative Modeling by Autoencoder

1 Reconstructions are not convincing

2 Because the density model is too simple
3 Good model still needs to capture the empirical distribution on the

data although in a lower dimensional space
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